Многогранник составленный из четырех правильных многоугольников

Правильные многогранники

Разделы: Математика

  1. Ввести понятие правильных многогранников.
  2. Рассмотреть виды правильных многогранников.
  3. Решение задач.
  4. Привить интерес к предмету, научить видеть прекрасное в геометрических телах, развитие пространственного воображения.
  5. Межпредметные связи.

Наглядность: таблицы, модели.

I. Организационный момент. Сообщить тему урока, сформулировать цели урока.

II. Изучение нового материала/

Есть в школьной геометрии особые темы, которые ждешь с нетерпением, предвкушая встречу с невероятно красивым материалом. К таким темам можно отнести “Правильные многогранники”. Здесь не только открывается удивительный мир геометрических тел, обладающих неповторимыми свойствами, но и интересные научные гипотезы. И тогда урок геометрии становится своеобразным исследованием неожиданных сторон привычного школьного предмета.

Ни одни геометрические тела не обладают таким совершенством и красотой, как правильные многогранники. “Правильных многогранников вызывающе мало, – написал когда-то Л. Кэролл, – но этот весьма скромный по численности отряд сумел пробраться в самые глубины различных наук”.

Определение правильного многогранника.

Многогранник называется правильным, если:

  1. он выпуклый;
  2. все его грани – равные друг другу правильные многоугольники;
  3. в каждой его вершине сходится одинаковое число ребер;
  4. все его двугранные углы равны.

Теорема: Существует пять различных (с точностью до подобия) типов правильных многогранников: правильный тетраэдр, правильный гексаэдр (куб), правильный октаэдр, правильный додекаэдр и правильный икосаэдр.

Таблица 1. Некоторые свойства правильных многогранников приведены в следующей таблице.

Рассмотрим виды многогранников:

Правильный гексаэдр (куб)

Таблица 2. Формулы для нахождения объемов правильных многогранников.

Куб и октаэдр дуальны, т.е. получаются друг из друга, если центры тяжести граней одного принять за вершины другого и обратно. Аналогично дуальны додекаэдр и икосаэдр. Тетраэдр дуален сам себе. Правильный додекаэдр получается из куба построением “крыш” на его гранях (способ Евклида), вершинами тетраэдра являются любые четыре вершины куба, попарно не смежные по ребру. Так получаются из куба все остальные правильные многогранники. Сам факт существования всего пяти действительно правильных многогранников удивителен – ведь правильных многоугольников на плоскости бесконечно много!

Все правильные многогранники были известны еще в Древней Греции, и им посвящена заключительная, XII книга знаменитых начал Евклида. Эти многогранники часто называют так же платоновыми телами в идеалистической картине мира, данной великим древнегреческим мыслителем Платоном. Четыре из них олицетворяли четыре стихии: тетраэдр-огонь, куб-землю, икосаэдр-воду и октаэдр-воздух; пятый же многогранник, додекаэдр, символизировал все мироздание. Его по латыни стали называть quinta essentia (“пятая сущность”).

Придумать правильный тетраэдр, куб, октаэдр, по-видимому, было не трудно, тем более что эти формы имеют природные кристаллы, например: куб – монокристалл поваренной соли (NaCl), октаэдр – монокристалл алюмокалиевых квасцов ((KAlSO4)2·l2H2O). Существует предположение, что форму додекаэдра древние греки получили, рассматривая кристаллы пирита (сернистого колчедана FeS). Имея же додекаэдр нетрудно построить и икосаэдр: его вершинами будут центры 12 граней додекаэдра.

Где еще можно увидеть эти удивительные тела?

В очень красивой книге немецкого биолога начала нашего века Э. Геккеля “Красота форм в природе” можно прочитать такие строки: “Природа вскармливает на своем лоне неисчерпаемое количество удивительных созданий, которые по красоте и разнообразию далеко превосходят все созданные искусством человека формы”. Создания природы, приведенные в этой книге, красивы и симметричны. Это неотделимое свойство природной гармонии. Но здесь видны одноклеточные организмы – феодарии, форма которых точно передает икосаэдр. Чем же вызвана эта природная геометризация? Может быть, тем, что из всех многогранников с таким же количеством граней именно икосаэдр имеет наибольший объем и наименьшую площадь поверхности. Это геометрическое свойство помогает морскому микроорганизму преодолевать давление водной толщи.

Интересно и то, что именно икосаэдр оказался в центре внимания биологов в их спорах относительно формы вирусов. Вирус не может быть совершенно круглым, как считалось ранее. Чтобы установить его форму, брали различные многогранники, направляли на них свет по теми же углами, что и поток атомов на вирус. Оказалось, что свойства, о которых говорилось выше, позволяют экономить генетическую информацию. Правильные многогранники – самые выгодные фигуры. И природа этим широко пользуется. Правильные многогранники определяют форму кристаллических решеток некоторых химических веществ. Следующая задача проиллюстрирует эту мысль.

Задача. Модель молекулы метана CH4 имеет форму правильного тетраэдра, в четырех вершинах которого находятся атомы водорода, а в центре – атом углерода. Определить угол связи между двумя CH связями.

Решение. Так как правильный тетраэдр имеет шесть равных ребер, то можно подобрать такой куб, чтобы диагонали его граней были ребрами правильного тетраэдра. Центр куба является и центром тетраэдра, ведь четыре вершины тетраэдра являются и вершинами куба, а описываемая около них сфера однозначно определяется четырьмя точками, не лежащими в одной плоскости.

Треугольник АОС – равнобедренный. Отсюда а – сторона куба, d – длина диагонали боковой грани или ребро тетраэдра. Итак, а = 54, 73561 0 и j = 109,47 0

Задача. В кубе из одной вершины (D) проведены диагонали граней DA, DB и DC и концы их соединены прямыми. Доказать, что многогранник DABC, образованный четырьмя плоскостями, проходящими через эти прямые, – правильный тетраэдр.

Задача. Ребро куба равно a. Вычислить поверхность вписанного в него правильного октаэдра. Найти ее отношение к поверхности вписанного в тот же куб правильного тетраэдра.

Обобщение понятия многогранника.

Многогранник – совокупность конечного числа плоских многоугольников такая, что:

  1. каждая сторона любого из многоугольников есть одновременно сторона другого (но только одного (называемого смежным с первым) по этой стороне);
  2. от любого из многоугольников составляющих многогранник, можно дойти до любого из них, переходя к смежному с ним, а от этого, в свою очередь, к смежному с ним и т.д.

Эти многоугольники называются гранями, их стороны – ребрами, а их вершины – вершинами многогранника.

Приведенное определение многогранника получает различный смысл в зависимости от того, как определить многоугольник:

– если под многоугольником понимают плоские замкнуты ломаные (хотя бы и само пересекающиеся), то приходят к данному определению многогранника;

– если под многоугольником понимать часть плоскости, ограниченной ломанными, то с этой точки зрения под многогранником понимают поверхность, составленную из многоугольных кусков. Если эта поверхность сама себя не пересекает, то она есть полная поверхность некоторого геометрического тела, которое так же называют многогранником. От сюда возникает третья точка зрения на многогранники как на геометрические тела, при чем допускается также существование у этих тел “дырок”, ограниченных конечным числом плоских граней.

Простейшими примерами многогранников являются призмы и пирамиды.

Многогранник называется n-угольной пирамидой, если он имеет одной своей гранью (основанием) какой-либо n-угольник, а остальные грани – треугольники с общей вершиной, не лежащей в плоскости основания. Треугольная пирамида называется также тетраэдром.

Многогранник называется n-угольной призмой, если он имеет двумя своими гранями (основаниями) равные n-угольники (не лежащие в одной плоскости), получающиеся друг из друга параллельным переносом, а остальные грани – параллелограммы, противоположными сторонами которых являются соответственные стороны оснований.

Для всякого многогранника нулевого рода эйлерова характеристика (число вершин минус число ребер плюс число граней) равна двум; символически: В – Р + Г = 2 (теорема Эйлера). Для многогранника рода p справедливо соотношение В – Р + Г = 2 – 2p.

Выпуклым многогранником называется такой многогранник, который лежит по одну сторону от плоскости любой его грани. Наиболее важны следующие выпуклые многогранники:

  1. правильные многогранники (тела Платона) – такие выпуклые многогранники, все грани которых одинаковые правильные многоугольники и все многогранные углы при вершинах правильные и равные ;
  2. изогоны и изоэдры – выпуклые многогранники, все многогранные углы которых равны (изогоны) или равные все грани (изоэдры); причем группа поворотов (с отражениями) изогона (изоэдра) вокруг центра тяжести переводит любую его вершину (грань) в любую другую его вершину (грань). Полученные так многогранники называются полуправильными многогранниками (телами Архимеда) ;
  3. параллелоэдры (выпуклые) – многогранники, рассматриваемые как тела, параллельным пересечением которых можно заполнить все бесконечное пространство так, чтобы они не входили друг в друга и не оставляли пустот между собой, т.е. образовывали разбиение пространства ;
  4. Если под многоугольником понимать плоские замкнутые ломаные (хотя бы и самопересекающиеся), то можно указать еще 4 невыпуклых (звездчатых) правильных многогранников (тела Пуансо). В этих многогранниках либо грани пересекают друг друга, либо грани – самопересекающиеся многоугольники .

III. Задание на дом.

IV. Решение задач № 279, № 281.

V. Подведение итогов.

Список использованной литературы:

  1. “Математическая энциклопедия”, под редакцией И. М. Виноградова, издательство “Советская энциклопедия”, Москва, 1985 г. Том 4 стр. 552–553 Том 3, стр. 708–711.
  2. “Малая математическая энциклопедия”, Э. Фрид, И. Пастор, И. Рейман и др. издательство Академии наук Венгрии, Будапешт, 1976 г. Стр. 264–267.
  3. “Сборник задач по математики для поступающих в ВУЗы” в двух книгах, под редакцией М.И. Сканави, книга 2 – Геометрия, изд-во “Высшая школа”, Москва, 1998 г. Стр. 45–50.
  4. “Практические занятия по математике: Учебное пособие для техникумов”, издательство “Высшая школа”, Москва, 1979 г. Стр. 388–395, стр. 405.
  5. “Повторяем математику” издание 2–6, доп., Учебное пособие для поступающих в ВУЗы, издательство “Высшая школа”, Москва, 1974 г. Стр. 446–447.
  6. Энциклопедический словарь юного математика, А. П. Савин, издательство “Педагогика”, Москва, 1989 г. Стр. 197–199.
  7. “Энциклопедия для детей. Т.П. Математика”, главный редактор М. Д. Аксенова; метод, и отв. редактор В. А. Володин, издательство “Аванта+”, Москва, 2003 г. Стр. 338–340.
  8. Геометрия, 10–11: Учебник для общеобразовательных учреждений/ Л.С. Атанасян, В.Ф.Бутузов, С.Б.Кадомцев и др. – 10-е издание – М.: Просвещение, 2001. Стр. 68–71.
  9. “Квант” № 9, 11 – 1983, № 12 – 1987, № 11, 12 – 1988, № 6, 7, 8 – 1989. Научно-популярный физико-математический журнал Академии наук СССР и Академии педагогических наук СССР. Издательство “Наука”. Главная редакция физико-математической литературы. Стр. 5–9, 6–12, 7–9, 10, 4–8, 13, 16, 58.
  10. Решение задач повышенной сложности по геометрии: 11-й класс – М.: АРКТИ, 2002. Стр. 9, 19–20.

Правильные многогранники

Нас окружает множество предметов. Они отличаются формой, размерами, материалом, из которого изготовлены, окраской и многими другими качествами. Математиков интересуют лишь форма предметов и их размеры, поэтому вместо предметов они рассматривают геометрические тела, например: куб, цилиндр, шар, конус и другие.

Читать еще:  Принять правильное решение максимально

Предварительный просмотр:

Введение: Нас окружает множество предметов. Они отличаются формой, размерами, материалом, из которого изготовлены, окраской и многими другими качествами. Математиков интересуют лишь форма предметов и их размеры, поэтому вместо предметов они рассматривают геометрические тела, например: куб, цилиндр, шар, конус и другие.

Гипотеза: я считаю, что, изучив данную тему, я смогу расширить свой кругозор в этой области и донести полученную информацию до ребят.

Собрать информацию о правильных многогранниках создать презентацию и модели правильных многогранников для урока математики.

Задачи:
1) прочитать литературу, собрать информацию в сети Интернет;
2) узнать какие многогранники называются правильными и почему;

3) узнать, сколько существует правильных многогранников;
3) ознакомиться с учеными, давшими названия данным многогранникам;

4) исследовать и показать значимость многогранников в мифологии, природе, живописи, архитектуре;

5) создать некоторые модели правильных многогранников;

6) рассказать о правильных многогранниках одноклассникам.

Многогранники это пространственные тела с плоскими гранями и прямолинейными ребрами, устроенные так, чтобы всякое ребро соединяло две вершины и служило общей стороной двух граней. Все многогранники имеют ряд общих свойств. Поверхность многогранника состоит из многоугольников. Каждый из этих многоугольников называют гранью многогранника. Вершины многоугольников являются также и вершинами многогранника, а стороны многоугольников – ребрами многогранника. Обратите внимание: у многоугольника вершин столько же, сколько сторон, а у многогранника число вершин и число граней необязательно одинаково. Сегодня я расскажу и покажу вам геометрические фигуры, которые относятся к правильным многогранникам.

Сначала определим, чем отличаются правильные многогранники от просто многогранника. Гранями правильного многогранника являются правильные многоугольники. Это многоугольники, у которых все стороны равны. Выпуклый многогранник называется правильным, если его грани являются правильными многогранниками с одним и тем же числом сторон и в каждой вершине многогранника сходится одно и то же число ребер. Правильных многоугольников много. А сколько же тогда правильных многогранников?

Для существования многогранника должно выполняться следующее условие: сумма плоских углов при вершине должна быть меньше 360 0 .

Рассмотрим правильный треугольник. Сумма углов правильного треугольника 180 0 , значит угол правильного треугольника, равен 60 0 . Из четырех правильных треугольников можно сложить – тетраэдр. Сумма трех плоских углов 120 0 .

Рассмотрим при вершине четыре угла, их сумма составляет 240 0 . Данный правильный многоугольник называется — правильный октаэдр и состоит из восьми правильных треугольников.

Рассмотрим при вершине пять углов, их сумма при вершине составляет 300 0 . Данный правильный многогранник называется – правильный икосаэдр и состоит из двенадцати правильных треугольников.

Если при вершине взять шесть углов они в сумме составят 360 0 , они образуют окружность. Значит больше составить правильных многоугольников из правильных треугольников нельзя.

Рассмотрим правильный четырехугольник – квадрат. Возьмем три квадрата и образуем вершину. Каждый угол квадрата равен 90 0 , в сумме образуют 270 0 , это меньше 360 0 . Данный многогранник называется правильный гексаэдр, и состоит из 6 квадратов. Также он имеет название параллелепипед или куб.

Если взять четыре квадрата они в сумме составляют 360 0 , значит составить больше правильных многогранников нельзя.

Рассмотрим правильный пятиугольник. Угол правильного многоугольника равен 108 0 , три угла в сумме составляют 324 0 , это меньше это меньше 360 0 . Данный правильный многоугольник называется – правильный додекаэдр и состоит из двадцати правильных пятиугольников.

Если рассмотреть правильный шестиугольник, его угол равен 120 0 . Три плоских угла шестиугольника в сумме составляют 360 0 , значит, правильный многогранник составить нельзя.

Вывод правильных многогранников только 5. Правильный тетраэдр, правильный гексаэдр, правильный октаэдр, правильный икосаэдр, правильный додекаэдр. В геометрии данные геометрические фигуры называются — тела Платона.

Платон (Platon) (род. 427 — ум. 347 гг.до н.э.) — греческий философ. Родился в Афинах. Настоящее имя Платона было Аристокл. Но впервые упоминались многогранники еще за три тысячи лет до нашей эры в Египте и Вавилоне. Вспомним знаменитые египетские пирамиды и самую известную из них – пирамиду Хеопса. Это правильная пирамида, в основании которой квадрат со стороной 233 м и высота которой достигает 146,5 м. Не случайно говорят, что пирамида Хеопса – немой трактат по геометрии. Названия многогранников пришли из Древней Греции, в них указывается число граней: «эдра» -грань; «тетра» — 4; «гекса» — 6; «окта» — 8; «икоса» — 20; «додека» — 12. В дословном переводе с греческого «тетраэдр», «октаэдр», «гексаэдр», «додекаэдр», «икосаэдр» означают: «четырехгранник», «восьмигранник», «шестигранник», «двенадцатигранник», «двадцатигранник». Этим красивым телам посвящена 13-я книга «Начал» Евклида.

Многогранники называют телами Платона, т.к. они занимали важное место в философской концепции Платона об устройстве мироздания. Четыре многогранника олицетворяли в ней четыре сущности или «стихии». Тетраэдр символизировал огонь, т.к. его вершина устремлена вверх; икосаэдр — воду, т.к. он самый «обтекаемый»; куб — землю, как самый «устойчивый»; октаэдр — воздух, как самый «воздушный». Пятый многогранник, додекаэдр, воплощал в себе «все сущее», символизировал все мироздание, считался главным.

Правильные многогранники – самые уникальные фигуры, поэтому они широко распространены в природе. Доказательством тому служит форма некоторых кристаллов. Например, кристаллы поваренной соли имеют форму куба.

Правильные многогранники встречаются так же и в живой природе. Например, скелет одноклеточного организма феодарии (Circjgjnia icosahtdra) по форме напоминает икосаэдр. Большинство феодарий живут на морской глубине и служат добычей коралловых рыбок. Но простейшее животное защищает себя двенадцатью иглами, выходящими из 12 вершин скелета. Из всех многогранников с тем же числом граней икосаэдр имеет наибольший объём при наименьшей площади поверхности. Это свойство помогает морскому организму преодолевать давление толщи воды.

Икосаэдр оказался в центре внимания биологов в их спорах относительно формы вирусов. Вирус не может быть совершенно круглым, как считалось ранее. Чтобы установить его форму, брали различные многогранники, направляли на них свет под теми же углами, что и поток атомов на вирус. Оказалось, что только один многогранник дает точно такую же тень — икосаэдр.

На картине художника Сальвадора Дали «Тайная Вечеря» Христос со своими учениками изображен на фоне огромного прозрачного додекаэдра. Форму додекаэдра, по мнению древних, имела ВСЕЛЕННАЯ, т.е. они считали, что мы живем внутри свода, имеющего форму поверхности правильного додекаэдра.

  1. Проводя исследования по данной теме, я изучил исторические данные по многогранникам; были изучены удивительные особенности строения правильных многогранников, их виды, особенности строения; рассмотрены интересные исторические гипотезы и факты. Мы увидели красоту, совершенство и гармонию форм этих тел, которые изучаются учеными на протяжении многих столетий и не перестают удивлять нас. Узнали, что в строении нашей, казалось бы, шарообразной планеты присутствуют правильные многогранники, что еще раз доказывает их значение в окружающем нас мире. И многие современные ученые склоняются к гипотезе, что вещества в природе состоят именно из этих уникальных фигур.
  2. При построении разверток многогранников я научился работать с чертежными инструментами;
  3. Создавая различные модели правильных многогранников расширил своё пространственное воображение.
  4. В дальнейшем хотел бы изучить и научиться строить модели других пространственных фигур.

Подводя итоги, можно считать цели исследования достигнутыми.

  1. Г.В.Дорофеев, И.Ф.Шарыгин, С.Б. Суворов. Математика. 5 класс: учеб. для общеобразоват. организаций – 3-е мзд. –М.:Просещение, 2015.
  2. Н.Я. Виленкин За страницами учебника математики: Арифметика. Алгебра. Геометрия – 1996.
  3. Математика: Школьная энциклопедия – 2003.
  4. И.Я. Депман, Н.Я. Виленкин. За страницами учебника математики – 1989

Многогранник составленный из четырех правильных многоугольников

Выпуклый многогранник называется правильным, если его гранями являются равные правильные многоугольники, и в каждой вершине сходится одинаковое число граней.
Рассмотрим возможные правильные многогранники и прежде всего те из них, гранями которых являются правильные треугольники. Наиболее простым таким правильным многогранником является треугольная пирамида, гранями которой являются правильные треугольники (рис. 1,а). В каждой ее вершине сходится по три грани. Имея всего четыре грани, этот многогранник называется также тетраэдром, что в переводе с греческого языка означает четырехгранник.

Многогранник, гранями которого являются правильные треугольники, и в каждой вершине сходится четыре грани, изображен на рисунке 1,в. Его поверхность состоит из восьми правильных треугольников, поэтому он называется октаэдром.
Многогранник, в каждой вершине которого сходится пять правильных треугольников, изображен на рисунке 1,г. Его поверхность состоит из двадцати правильных треугольников, поэтому он называется икосаэдром.
Заметим, что поскольку в вершинах выпуклого многогранника не может сходиться более пяти правильных треугольников, то других правильных многогранников, гранями которых являются правильные треугольники, не существует.
Аналогично, поскольку в вершинах выпуклого многогранника может сходиться только три квадрата, то, кроме куба (рис. 1,б), других правильных многогранников, у которых гранями являются квадраты не существует. Куб имеет шесть граней и поэтому называется также гексаэдром.
Многогранник, гранями которого являются правильные пятиугольники, и в каждой вершине сходится три грани, изображен на рисунке 1,д. Его поверхность состоит из двенадцати правильных пятиугольников, поэтому он называется додекаэдром.
Поскольку в вершинах выпуклого многогранника не могут сходиться правильные многоугольники с числом сторон больше пяти, то, используя теорему Коши о жесткости выпуклого многогранника, получаем, что других правильных многогранников не существует, и таким образом, имеется только пять правильных многогранников: тетраэдр, куб, октаэдр, додекаэдр и икосаэдр.
Рассмотрим понятие правильного многогранника с точки зрения топологии науки, изучающей свойства фигур, не зависящих от различных деформаций без разрывов. С этой точки зрения, например, все треугольники эквивалентны, так как один треугольник всегда может быть получен из любого другого соответствующим сжатием или растяжением сторон. Вообще все многоугольники с одинаковым числом сторон эквивалентны по той же причине.
Как в такой ситуации определить понятие топологически правильного многогранника? Иначе говоря, какие свойства в определении правильного многогранника являются топологически устойчивыми и их следует оставить, а какие не являются топологически устойчивыми и их следует отбросить.
В определении правильного многогранника количество сторон и количество граней являются топологически устойчивыми, т.е. не меняющимися при непрерывных деформациях. Правильность же многоугольников не является топологически устойчивым свойством. Таким образом, мы приходим к следующему определению.
Выпуклый многогранник называется топологически правильным, если его гранями являются многоугольники с одним и тем же числом сторон и в каждой вершине сходится одинаковое число граней.
Например, все треугольные пирамиды являются топологически правильными многогранниками, эквивалентными между собой. Все параллелепипеды также являются эквивалентными между собой топологически правильными многогранниками. Четырехугольные пирамиды не являются топологически правильными многогранниками.
Выясним вопрос о том, сколько существует не эквивалентных между собой топологически правильных многогранников.
Как мы знаем, существует только пять правильных многогранников: тетраэдр, куб, октаэдр, икосаэдр и додекаэдр. Казалось бы, топологически правильных многогранников должно быть гораздо больше. Однако оказывается, что никаких других топологически правильных многогранников, не эквивалентных уже известным правильным, не существует.
Для доказательства этого воспользуемся теоремой Эйлера. Пусть дан топологически правильный многогранник, гранями которого являются n — угольники, и в каждой вершине сходится m ребер. Ясно, что n и m больше или равны трем. Обозначим, как и раньше, В — число вершин, Р — число ребер и Г — число граней этого многогранника. Тогда

Читать еще:  Правильно принять директора работу

n Г = 2P; Г = ; mB = 2P; В = .

По теореме Эйлера, В — Р + Г = 2 и, следовательно,

Откуда Р = .
Из полученного равенства, в частности, следует, что должно выполняться неравенство 2n + 2mnm > 0, которое эквивалентно неравенству (n – 2)(m – 2)

В эпоху Возрождения большой интерес к формам правильных многогранников проявили скульпторы, архитекторы, художники. Леонардо да Винчи, например, увлекался теорией многогранников и часто изображал их на своих полотнах. Он проиллюстрировал изображениями правильных и полуправильных многогранников книгу своего друга монаха Луки Пачоли (1445-1514) «О божественной пропорции».

Другим знаменитым художником эпохи Возрождения, также увлекавшимся геометрией, был А. Дюрер. В его известной гравюре «Меланхолия» на переднем плане изображен додекаэдр. В 1525 году Дюрер написал трактат, в котором представил пять правильных многогранников, поверхности которых служат хорошими моделями перспективы.

Иоганн Кеплер (1571-1630) в своей работе «Тайна мироздания» в 1596 году, используя правильные многогранники, вывел принцип, которому подчиняются формы и размеры орбит планет Солнечной системы. Геометрия Солнечной системы, по Кеплеру, заключалась в следующем: «Земля (имеется в виду орбита Земли) есть мера всех орбит. Вокруг сферы Земли опишем додекаэдр. Описанная вокруг додекаэдра сфера есть сфера Марса. Вокруг сферы Марса опишем тетраэдр. Описанная вокруг тетраэдра сфера есть сфера Юпитера. Вокруг сферы Юпитера опишем куб. Описанная вокруг куба сфера есть сфера Сатурна. В сферу Земли вложим икосаэдр. Вписанная в него сфера есть сфера Венеры. В сферу Венеры вложим октаэдр. Вписанная в него сфера есть сфера Меркурия». Такая модель Солнечной системы получила название «Космического кубка» Кеплера (рис. 2)

Литература
1. Адамар Ж. Элементарная геометрия. Часть II. Стереометрия. – М.: Учпедгиз, 1938 (или более поздние издания, например, 3-е изд., 1958). Книга VI. Многогранники. Дополнения: Глава V.
2. Александров А.Д. Выпуклые многогранники. – М.-Л.; 1950.
3. Болл У., Коксетер Г. Математические эссе и развлечения. – М.: Мир, 1986, с.142.
4. Долбилин Н.П. Жемчужины теории многогранников. – М.: МЦНМО, 2000, с.27-31.
5. Люстерник Л.А. Выпуклые фигуры и многогранники. – М.; 1956.
6. Перепелкин Д.И. Курс элементарной геометрии. Часть II. Геометрия в пространстве. – М.-Л.: Гостехиздат, 1949, с. 34, с.268.
7. Смирнова И.М. В мире многогранников. – М.: Просвещение, 1995.
8. Энциклопедия элементарной математики. Книга IV. Геометрия. — М.; 1963, с. 382.
9. Яглом И.М., Болтянский В.Г. Выпуклые фигуры. – М.-Л.; 1951 /Библиотека математического кружка, выпуск 4.

Многогранник составленный из четырех правильных многоугольников

Многогранником называется трехмерное тело, граница которого состоит из многоугольников: например, куб, прямоугольный параллелепипед, пирамиды, призмы и др. Эти многоугольники называются гранями , стороны, по которым они соединяются друг с другом (один с другим) – ребрами ; ребра начинаются и заканчиваются в вершинах .

Правильным многогранником называется такой многогранник, у которого все грани равны и представляют собой равные правильные многоугольники, все ребра и все вершины также равны между собой. В то время, как правильных многоугольников существует сколько угодно, правильных многогранников ограниченное число.

Как правильные многоугольники начинаются с треугольника, так правильные многогранники начинаются с его аналога – тетраэдра (т. е., по-гречески, четырехгранника). У него минимально возможное число вершин и граней – тех и других по четыре, а ребер шесть (три вершины всегда лежат в одной плоскости, для объемного тела нужно поэтому не меньше четырех вершин; тремя же плоскими гранями нельзя ограничить конечный объем в пространстве). В каждой вершине сходятся три треугольных грани и, соответственно, по три ребра. Тетраэдр – это пирамида, причем самая простая – трехгранная (любая пирамида состоит из основания и боковых граней; пирамида называется n -гранной , если у нее n боковых граней; легко видеть, что у n -гранной пирамиды основание неминуемо должно иметь форму n -угольника). Все, что мы пока говорили о тетраэдре, применимо к любому тетраэдру, не обязательно правильному; у правильного же тетраэдра грани – это правильные треугольники.

Со следующим правильным многогранником вы хорошо знакомы – это куб . Если тетраэдр в определенном смысле аналогичен треугольнику, то куб – квадрату. Куб – это такой прямоугольный параллелепипед, у которого все грани – квадраты. Попробуйте, не глядя на картинку, сообразить, сколько у куба (и, на самом деле, у любого прямоугольного параллелепипеда) граней, сколько вершин, сколько ребер и по сколько граней и ребер сходятся в каждой вершине.

Еще у одного правильного многогранника – октаэдра (т. е. восьмигранника) – нет аналогов в плоском мире, т. к. он немного похож на треугольник, а немного на квадрат. Октаэдр можно сделать из двух четырехгранных пирамид, склеив их основания. Грани правильного октаэдра являются правильными треугольниками. В каждой его вершине сходятся не три, как у тетраэдра и куба, а четыре грани. Форму октаэдра имеют, например, природные кристаллы алмаза.

Октаэдр тесно связан с кубом так называемым свойством взаимности : центры граней куба являются вершинами правильного октаэдра, а центры граней правильного октаэдра являются вершинами куба. Если соединять отрезками центры соседних граней куба, то эти отрезки станут ребрами октаэдра; если проделать ту же операцию с октаэдром, получится куб. Между прочим, исходя из этого, понятно, что число вершин октаэдра равно числу граней куба, и наоборот; более того, количества ребер у них совпадают.

Как вы полагаете, что будет, если соединить отрезками центры соседних граней тетраэдра?

Если соединить отрезками центры соседних граней тетраэдра, получится другой тетраэдр.

Можно ли сформулировать какой-нибудь аналог свойства взаимности для правильных многоугольников?

Для многоугольников свойство взаимности должно заключаться в том, что центры сторон правильного многоугольника сами образуют правильный многоугольник с тем же числом сторон.

Между прочим, тетраэдр тоже родствен кубу. А именно, если выбрать такие четыре вершины куба, из которых никакие две не являются смежными, и соединить их отрезками, то эти отрезки образуют тетраэдр!

Самое важное свойство правильных многогранников, сразу обращающее на себя внимание – это их высокая степень симметричности. Определенное количество отражений вокруг разных плоскостей, а также целый ряд поворотов вокруг разных осей, переводят каждый из многогранников сам в себя. У каждого из них есть центр, через который проходят все эти плоскости симметрии и оси; вершины равноудалены от этого центра, это же верно для граней и ребер. Поэтому в каждый правильный многогранник можно вписать сферу, и около каждого из них можно описать сферу. (В этом плане, впрочем, они вполне аналогичны правильным многоугольникам, в каждый из которых можно вписать окружность и вокруг каждого из которых тоже можно описать окружность).

Сколько у куба, тетраэдра, октаэдра плоскостей симметрии? Сколько у каждого из них осей поворотов, переводящих многогранник сам в себя?

Три упомянутых правильных многогранника были известны уже пифагорейцам, которые, понимая их замечательные математические свойства, догадывались, что эти тела каким-то образом должны быть связаны с устройством мира. По-видимому, Теэтет (V в. до н. э.) первым показал, что существует еще два правильных многогранника, а именно, додекаэдр (12-гранник) и икосаэдр (20-гранник). Додекаэдр состоит из правильных пятиугольников, которые сходятся по 3 в каждой вершине; икосаэдр – из правильных треугольников, которые сходятся по 5 в каждой вершине. Эти многогранники обладают свойством взаимности по отношению друг к другу. Можно показать, что никаких кристаллов в форме данных многогранников быть не может; тем не менее, в живой природе икосаэдры встречаются: такую форму имеют белковые оболочки некоторых вирусов (в частности, хорошо изученного вируса «табачной мозаики»).

Нетрудно видеть, что никаких других правильных многогранников сверх указанных пяти быть не может. В самом деле, в одной вершине должно сходится не меньше 3 граней. С другой стороны, эти грани должны иметь не больше 5 сторон, потому что, например, 3 шестиугольника, сходясь в одной точке и соединяясь сторонами друг с другом, будут лежать в одной плоскости и не образуют многогранного угла. У семиугольников и т. д. углы еще больше. В то же время, если грани четырехугольные, то их не может сойтись в одной вершине больше трех (нужно, чтобы двугранные углы при каждом ребре были бы равными): 4 квадрата, сходясь, будут лежать в одной плоскости. Если же грани треугольные, то их не может сойтись больше пяти: 6 правильных треугольников тоже будут лежать в одной плоскости. Таким образом, возможные варианты – это треугольники, сходящиеся по 3, 4 и 5, а также квадраты и пятиугольники, сходящиеся по 3. Все эти пять вариантов и реализованы в пяти известных правильных многогранниках.

Правильные многогранники носят также название платоновых тел , т. к. занимают важное место в философии Платона. Как и другие древние греки, он считал, что существует 4 первоэлемента – земля, вода, воздух и огонь. Развивая пифагорейскую концепцию о математическом устройстве Вселенной, Платон полагал, что каждый элемент имеет форму того или иного правильного многогранника: земле как самому устойчивому элементу соответствует куб, огню – самый «небольшой» многогранник с самыми острыми вершинами и ребрами, то есть тетраэдр; воде соответствует икосаэдр, а воздуху – октаэдр. Эти элементы – неделимые («атомы»), как в философии Демокрита; элементы могут превращаться друг в друга по определенным законам, связанным с сохранением тех треугольников, из которых сделаны: например, одно «тело» воздуха может превратиться в два «тела» огня, а одно «тело» воды – в два «тела» воздуха и одно – огня. (Сами треугольники при этом материальными не являются, поскольку плоские, тогда как материальные тела должны быть трехмерными). Форма же всей Вселенной соответствует пятому телу – додекаэдру. Таким образом, в пифагорейско-платоновском космосе торжествует математическая гармония, выражаемая «золотым сечением», тесно связанным с правильным пятиугольником, который и лежит в основе додекаэдра.

Читать еще:  Книга правильно одетая жена

Построению и свойствам 5 правильных многогранников (а также доказательству того, что других не существует) посвящена тринадцатая – заключительная – книга «Начал» Евклида. Согласно комментарию неоплатоника Прокла, структура «Начал» соответствует устройству Вселенной по Платону: она начинается с самых исходных элементов – точек и прямых – чтобы в результате придти к построению мира в целом.

Иоганн Кеплер также полагал, что правильные многогранники лежат в основе устройства мира. Кеплер думал, что расстояния от Солнца до 6 известных в то время планет должны удовлетворять какому-то математическому закону. Гипотеза Кеплера заключалась в том, что если представить сферы, на которых лежат орбиты 6 планет с центром в Солнце, то в эти сферы последовательно вписываются и описываются около пяти правильных многогранников – октаэдра, икосаэдра, додекаэдра, тетраэдра и куба (в порядке удаления от Солнца).

Внимательно анализируя результаты наблюдений, Кеплер не нашел подтверждения своей идее, тем не менее, его убежденность в рационально-математическом характере устройства мира в конце концов привела его к открытию подлинных законов движения планет.

Иоганн Кеплер изучал так же так называемые полуправильные многогранники – составленные из нескольких правильных многоугольников.

Математиков Нового времени правильные многогранники интересовали главным образом в связи с совокупностями (группами) тех преобразований – поворотов и симметрий – которые переводят многогранники сами в себя. Изучение групп преобразований оказалось важным для, казалось бы, совершенно не связанных с этим вопросов. Так, Феликсу Клейну принадлежит книга, название которой говорит само за себя: «Лекции об икосаэдре и решении уравнений пятой степени». В XX в. теория групп оказалась чрезвычайно важной для квантовой механики, изучающей молекулы, атомы и элементарные частицы: та или иная группа преобразований, оказывается, является определяющей для того или иного объекта микромира. Как отметил один из основателей квантовой механики Вернер Гейзенберг, Платон не так уж и ошибался, когда клал в основу элементов мироздания те или иные симметричные структуры.

Правильные многогранники

Правильными называют выпуклые многогранники, все грани которых представляют собой одинаковые правильные многоугольники, и в каждой вершине сходится одинаковое количество граней. Такие многогранники называют также платоновыми телами.

Существует всего пять правильных многогранников:

Тип правильного многогранника

Число сторон у грани

Число рёбер, примыкающих к вершине

Общее число вершин

Общее число рёбер

Общее число граней

Гексаэдр или куб

Название каждого многогранника происходит от греческого названия количества его граней и слова «грань».

Тетраэдр (греч. фефсбедспн — четырёхгранник) — многогранник с четырьмя треугольными гранями, в каждой из вершин которого сходятся по 3 грани. У тетраэдра 4 грани, 4 вершины и 6 рёбер.

Параллельные плоскости, проходящие через пары скрещивающихся рёбер тетраэдра, определяют описанный около тетраэдра параллелепипед.

Отрезок, соединяющий вершину тетраэдра с точкой пересечения медиан противоположной грани, называется его медианой, опущенной из данной вершины.

Отрезок, соединяющий середины скрещивающихся рёбер тетраэдра, называется его бимедианой, соединяющей данные рёбра.

Отрезок, соединяющий вершину с точкой противоположной грани и перпендикулярный этой грани, называется его высотой, опущенной из данной вершины.

Теорема. Все медианы и бимедианы тетраэдра пересекаются в одной точке. Эта точка делит медианы в отношении 3:1, считая от вершины. Эта точка делит бимедианы пополам.

  • · равногранный тетраэдр, у которого все грани — равные между собой треугольники;
  • · ортоцентрический тетраэдр, у которого все высоты, опущенные из вершин на противоположные грани, пересекаются в одной точке;
  • · прямоугольный тетраэдр, у которого все ребра, прилежащие к одной из вершин, перпендикулярны между собой;
  • · правильный тетраэдр, у которого все грани — равносторонние треугольники;
  • · каркасный тетраэдр — тетраэдр, отвечающий любому из условий[1]:
  • · Существует сфера, касающаяся всех ребер.
  • · Суммы длин скрещивающихся ребер равны.
  • · Суммы двугранных углов при противоположных ребрах равны.
  • · Окружности, вписанные в грани, попарно касаются.
  • · Все четырехугольники, получающиеся на развертке тетраэдра, — описанные.
  • · Перпендикуляры, восставленные к граням из центров вписанных в них окружностей, пересекаются в одной точке.
  • · соразмерный тетраэдр, все бивысоты которого равны;
  • · инцентрический тетраэдр, у которого отрезки, соединяющие вершины тетраэдра с центрами окружностей, вписанных в противоположные грани, пересекаются в одной точке.

Куб или правильный гексаэдр — правильный многогранник, каждая грань которого представляет собой квадрат. Частный случай параллелепипеда и призмы.

  • · Четыре сечения куба являются правильными шестиугольниками — эти сечения проходят через центр куба перпендикулярно четырём его главным диагоналям.
  • · В куб можно вписать тетраэдр двумя способами. В обоих случаях четыре вершины тетраэдра будут совмещены с четырьмя вершинами куба и все шесть рёбер тетраэдра будут принадлежать граням куба. В первом случае все вершины тетраэдра принадлежат граням трехгранного угла, вершина которого совпадает с одной из вершин куба. Во втором случае попарно скрещивающиеся ребра тетраэдра принадлежат попарно противолежащим граням куба. Такой тетраэдр является правильным.
  • · В куб можно вписать октаэдр, притом все шесть вершин октаэдра будут совмещены с центрами шести граней куба.
  • · Куб можно вписать в октаэдр, притом все восемь вершин куба будут расположены в центрах восьми граней октаэдра.
  • · В куб можно вписать икосаэдр, при этом шесть взаимно параллельных рёбер икосаэдра будут расположены соответственно на шести гранях куба, остальные 24 ребра — внутри куба. Все двенадцать вершин икосаэдра будут лежать на шести гранях куба.

Диагональю куба называют отрезок, соединяющий две вершины, симметричные относительно центра куба. Диагональ куба находится по формуле

многогранник икосаэдр октаэдр додекаэдр

где d — диагональ, а — ребро куба.

Октаэдр (греч. пкфЬедспн, от греч. пкфю, «восемь» и греч. Эдсб — «основание») — один из пяти выпуклых правильных многогранников, так называемых Платоновых тел.

Октаэдр имеет 8 треугольных граней, 12 рёбер, 6 вершин, в каждой его вершине сходятся 4 ребра.

Если длина ребра октаэдра равна а, то площадь его полной поверхности (S) и объём октаэдра (V) вычисляются по формулам:

Радиус сферы, описанной вокруг октаэдра, равен:

радиус вписанной в октаэдр сферы может быть вычислен по формуле:

Правильный октаэдр имеет симметрию Oh, совпадающую с симметрией куба.

Октаэдр имеет одну звездчатую форму. Октаэдр был открыт Леонардо да Винчи, затем спустя почти 100 лет переоткрыт Иоганном Кеплером, и назван им Stella octangula — звезда восьмиугольная. Отсюда эта форма имеет и второе название «stella octangula Кеплера».

По сути она является соединением двух тетраэдров

Додекаэдр (от греч. дюдекб — двенадцать и едспн — грань), двенадцатигранник — правильный многогранник, составленный из двенадцати правильных пятиугольников. Каждая вершина додекаэдра является вершиной трёх правильных пятиугольников.

Таким образом, додекаэдр имеет 12 граней (пятиугольных), 30 рёбер и 20 вершин (в каждой сходятся 3 ребра). Сумма плоских углов при каждой из 20 вершин равна 324°.

Додекаэдр имеет 3 звёздчатые формы: малый звёздчатый додекаэдр, большой додекаэдр, большой звёздчатый додекаэдр (звёздчатый большой додекаэдр, завершающая форма). Первые две из них были открыты Кеплером (1619), третья — Пуансо (1809). В отличие от октаэдра любая из звёздчатых форм додекаэдра не является соединением платоновых тел, а образует новый многогранник.

Все 3 звёздчатые формы додекаэдра, вместе с большим икосаэдром образуют семейство тел Кеплера-Пуансо, то есть правильных невыпуклых (звёздчатых) многогранников.

У большого додекаэдра гранями являются пятиугольники, которые, сходятся по пять в каждой из вершин. У малого звёздчатого и большого звёздчатого додекаэдров грани — пятиконечные звёзды (пентаграммы), которые в первом случае сходятся по 5, а во втором по 3. Вершины большого звёздчатого додекаэдра совпадают с вершинами описанного додекаэдра. У каждой вершины соединяются три грани.

Если за длину ребра принять a, то площадь поверхности додекаэдра:

Радиус описанной сферы:

Радиус вписанной сферы:

Элементы симметрии додекаэдра:

· Додекаэдр имеет центр симметрии и 15 осей симметрии.

Каждая из осей проходит через середины противолежащих параллельных ребер.

· Додекаэдр имеет 15 плоскостей симметрии. Любая из плоскостей симметрии проходит в каждой грани через вершину и середину противоположного ребра.

Икосаэдр (от греч. ейкпуЬт — двадцать; -едспн — грань, лицо, основание) — правильный выпуклый многогранник, двадцатигранник, одно из Платоновых тел. Каждая из 20 граней представляет собой равносторонний треугольник. Число ребер равно 30, число вершин — 12.

Площадь S, объём V икосаэдра с длиной ребра a, а также радиусы вписанной и описанной сфер вычисляются по формулам:

радиус вписанной сферы:

радиус описанной сферы:

  • · Икосаэдр можно вписать в куб, при этом, шесть взаимно перпендикулярных рёбер икосаэдра будут расположены соответственно на шести гранях куба, остальные 24 ребра внутри куба, все двенадцать вершин икосаэдра будут лежать на шести гранях куба.
  • · В икосаэдр может быть вписан тетраэдр, притом, четыре вершины тетраэдра будут совмещены с четырьмя вершинами икосаэдра.
  • · Икосаэдр можно вписать в додекаэдр, при этом вершины икосаэдра будут совмещены с центрами граней додекаэдра.
  • · В икосаэдр можно вписать додекаэдр с совмещением вершин додекаэдра и центров граней икосаэдра.
  • · Усечённый икосаэдр может быть получен срезанием 12 вершин с образованием граней в виде правильных пятиугольников. При этом число вершин нового многогранника увеличивается в 5 раз (12?5=60), 20 треугольных граней превращаются в правильные шестиугольники (всего граней становится 20+12=32), а число рёбер возрастает до 30+12?5=90.

Икосаэдр имеет 59 звёздчатых форм, из которых 32 обладают полной, а 27 неполной икосаэдральной симметрией. Одна из этих звёздчатых форм (20-я, мод. 41 по Веннинджеру), называемая большим икосаэдром, является одним из четырёх правильных звёздчатых многогранников Кеплера—Пуансо. Его гранями являются правильные треугольники, которые сходятся в каждой вершине по пять; это свойство является у большого икосаэдра общим с икосаэдром.

Среди звёздчатых форм также имеются: соединение пяти октаэдров, соединение пяти тетраэдров, соединение десяти тетраэдров.

Ссылка на основную публикацию
Adblock
detector