Как правильно составлять формулу мицеллы

Строение мицелл коллоидных растворов;

Лекция 21. Строение мицелл гидрофобных золей

Вопросы для самопроверки

1. Назовите основные методы получения коллоидных систем.

2. Поясните сущность дисперсионных и конденсационных методов получения коллоидных растворов, приведите примеры.

3. В чем заключается сущность электрохимических явлений? Рассмотрите явление электрофореза и электроосмоса.

4. Объясните, какова природа эффектов Дорна и Квинке. Как они возникают?

5. Назовите главную причину наличия электрокинетических явлений у дисперсных систем.

6. Изложите краткие сведения о современной теории строения двойного электрического слоя.

7. Дайте определение понятия “электрокинетический потенциал”.

8. Каким образом можно рассчитать значение ζ-потенциала и от каких факторов он зависит?

21.1 Строение мицелл коллоидных растворов.

21.2 Очистка коллоидных систем.

21.3 Агрегативная и седиментационная устойчивость дисперсных систем.

Советские и зарубежные ученые (А.В.Думанский, Н.Н.Песков, А.Н.Фрумкин, Веймарн, Паули и др.) на основе теории двойного электрического слоя создали так называемую мицеллярную теорию строения коллоидных частиц. Первоначально представления о мицеллярном строении частиц распространялись на все коллоидные растворы, в том числе и на лиофильные золи. Однако последующие исследования показали, что лиофильные золи (точнее растворы высокомолекулярных и высокополимерных соединений) имеют другое, отличное от лиофобных золей строение. В настоящее время мицеллярная теория строения коллоидных частиц сохраняет свое значение только для лиофобных (гидрофобных) золей.

Всякий лиофобный коллоидный раствор состоит из двух частей: мицелл и интермицеллярной жидкости. Мицеллы – это отдельные коллоидные частицы, которые в совокупности составляют дисперсную фазу золя, а интермицеллярная жидкость – это дисперсионная среда этого же золя, которая включает помимо среды-растворителя, все другие растворенные в ней вещества (электролиты и неэлектролиты), которые непосредственно не входят в состав мицелл.

Коллоидная мицелла имеет значительно более сложное строение, чем обычные молекулы. В ней различают две основные части: внутреннюю – нейтральную, обычно называемую ядром, и внешнюю – ионогенную, в свою очередь, состоящую из двух слоев (адсорбционного и диффузного). Адсорбционный слой слагается из слоя потенциалопределяющих ионов, адсорбированных на поверхности ядра и сообщающих ему свой заряд и части противоионов, проникших за плоскость скольжения и наиболее прочно связанных электростатическими силами притяжения. Вместе с ядром адсорбционный слой образует гигантских размеров многозарядный ион, называемый гранулой. Диффузный слой, расположенный за плоскостью скольжения, в отличие от адсорбционного не имеет в дисперсионной среде резко очертанной границы. Этот слой состоит из противоионов, общее число которых равняется в среднем разности между всем числом потенциалопределяющих ионов и числом противоионов, находящихся в абсорбционном слое.

Гранула вместе с диффузным слоем противоионов составляет коллоидную частицу – мицеллу. Мицелла всегда электронейтральна. Известно, что противоионами могут служить любые ионы тех электролитов, которые участвуют в реакциях при получении данного золя или присутствуют как посторонние примеси.

В качестве примера рассмотрим получение гидрозоля иодида серебра методом конденсации. Оно основано на химической реакции:

Ядро коллоидной мицеллы в данном случае будет состоять из нейтральных молекул AgI. В зависимости от относительной концентрации реагирующих веществ может быть три случая.

1. Концентрация AgNO3 больше концентрации KI, нитрат серебра является стабилизатором золя.

Схема строения мицеллы золя иодида серебра имеет вид:

Коллоидная частица золя имеет положительный заряд (x + ). Граница скольжения, по которой мицелла разрывается при движении в электрическом поле, лежит между коллоидной частицей и диффузным слоем.

Рис. 21.1 Схема строения мицеллы золя иодида серебра

2. Концентрация KI больше концентрации AgNO3, иодид калия является стабилизатором золя.

Схема строения мицеллы золя иодида серебра:

Коллоидная частица золя имеет отрицательный заряд (x − ).

3. Концентрации нитрата серебра и иодида калия равны. В этом случае золь находится в изоэлектрическом состоянии, т.е. в состоянии, при котором электрокинетический потенциал (дзета-потенциал) ζ = 0. В этом случае противоионы диффузного слоя мицеллы переходят в адсорбционный слой и коллоидная частица лишена заряда.

В коллоидной химии различают следующие виды пептизации:

в) промывание осадка растворителем.

Рассмотрим получение золей методом пептизации на примерах:

получение золей берлинской лазури адсорбционной пептизацией.

Приготовим осадок берлинской лазури KFe[Fe(CN)6]:

Добавим к образовавшемуся осадку электролит FeCI3 (пептизатор) – образуется золь, структурная единица дисперсионной фазы которого называется мицеллой.

Как происходит образование мицеллы? Ионы Fe 3+ (потенциалопределяющие ионы) адсорбируются на поверхности частиц осадка m KFe[Fe(CN)6], заряжая их положительно, к положительно заряженной поверхности образовавшегося ядра мицеллы притягиваются ионы противоположного знака – противоионы (ионы CI − ). Часть этих ионов, составляющая адсорбционный слой, прочно удерживается у поверхности ядра за счет электростатических и адсорбционных сил. Ядро вместе с адсорбционным слоем составляет коллоидную частицу. Остальные противоионы связаны с ядром только электростатическими силами. Эти противоионы образуют диффузный слой. Наличие заряда у коллоидных частиц приводит к их отталкиванию и обеспечивает устойчивость золя.

Мицеллу золя берлинской лазури можно представить в виде круговой схемы:

Рис. 21.2 Схема строения мицеллы золя берлинской лазури.

Как следует из данных рисунка и приведенной выше структурной формулы мицеллы, на поверхности твердых частиц осадка располагаются противоположные по знаку заряда ионы, которые пространственно разделены. Эти ионы образуют двойной электрический слой.

Если для получения золя берлинской лазури берется некоторый избыток желтой кровяной соли, то стабилизатором золя будет K4[Fe(CN)6].

Процесс получения золя может быть представлен уравнением реакции:

Мицеллы данного золя выражаются формулой:

а коллоидные частицы имеют отрицательный заряд ( ПОИ [Fe(CN)6 ] 4− ).

Диссолюционная пептизация отличается от адсорбционной только отсутствием в готовом виде электролита-пептизатора. Рассмотрим на примере получения золя гидроксида железа.

Метод промывания осадка растворителем используется, если осадок получен при значительном избытке одного из реагентов. Это вызывает сжатие двойного электрического слоя. Ионы диффузного слоя проникают в адсорбционный и в результате заряд коллоидной частицы становится равным нулю:

После промывания осадка растворителем мицеллы будут иметь вид:

Химический метод конденсации основан на реакциях, приводящих к возникновению твердого продукта. Это реакции:

а) восстановления. Например, получение золей золота и серебра при взаимодействии солей этих металлов с восстановителями:

<[mAu]∙nAuO2 − ∙(n−x)K + > x− ∙xK + − мицелла золя золота.

б) окисления. Например, получение золя серы:

Параллельно протекают более сложные процессы, приводящие к образованию политионовых кислот H2S5O6, являющихся стабилизаторами. Строение мицеллы полученного золя можно представить следующей формулой:

в) гидролиза. Например, красно-бурый золь гидроксида железа получается, если в кипящую воду добавить небольшое количество хлорида железа:

Потенциалопределяющие ионы: Fe 3+ ,FeO+,H + .Таким образом, мицелла золя

Fe(OH)3 в соответствии с тем, какой ион является стабилизатором, может быть выражена формулами:

г) обмена. Например, получение золя сульфата бария.

При использовании реакции обмена состав мицелл зависит от того, что к чему приливать!

Примером получения коллоидных систем кристаллизацией является кристаллизация из пересыщенного раствора сахарозы в производстве сахара. Процесс десублимации имеет место при образовании облаков, когда в условиях переохлажденного состояния из водяных паров образуется сразу кристаллики, а не капли воды.

Строение коллоидных мицелл

Коллоидные системы состоят из дисперсной фазы и дисперсионной среды. Частицу дисперсной фазы вместе с двойным электрическим слоем называют мицеллой.

Мицелла – сложное структурное образование, состоящее из агрегата, потенциалопределяющих ионов и противоионов.

Внутреннюю часть мицеллы составляет агрегат основного вещества. Как правило, агрегат состоит из большого числа молекул или атомов кристаллического или аморфного строения. Агрегат электронейтрален, но обладает большой адсорбционной способностью и способен адсорбировать на своей поверхности ионы из раствора – потенциалопределяющие ионы (ПОИ).

При выборе потенциалопределяющих ионов пользуются эмпирическим правилом Фаянса – Панета – Пескова: «На твердой поверхности агрегата в первую очередь адсорбируются ионы, которые:

Читать еще:  Как правильно составлять план по обществознанию

— входят в состав агрегата;

— способны достраивать кристаллическую решетку агрегата;

— образуют малорастворимое соединение с ионами агрегата;

— изоморфны с ионами агрегата».

Агрегат вместе с потенциалопределяющими ионами составляет ядро мицеллы. Ядро мицеллы, обладающее большим зарядом, притягивает ионы противоположного заряда – противоионы (ПИ) из раствора.

Часть противоионов находится в непосредственной близости от ядра, прочно связана с ним за счет адсорбционных и электростатических сил, и образует плотную часть двойного электрического слоя (адсорбционный слой).

Ядро с противоионами плотной части двойного электрического слоя образуют гранулу или коллоидную частицу. Знак заряда коллоидной частицы определяется знаком заряда потенциалопределяющих ионов.

Коллоидную частицу (гранулу) окружают противоионы диффузного слоя – остальная часть противоионов, подвергающихся броуновскому движению и менее прочно связанная с ядром. В целом образуется мицелла. Мицелла в отличие от коллоидной частицы электронейтральна.

Пример 4.2. Рассмотрим строение мицеллы при образовании коллоидного раствора – золя иодида серебра методом химической конденсации при небольшом избытке нитрата серебра

.

Рис. 4.11. Схематическое строение мицеллы золя иодида серебра

Формула мицеллы запишется:

где m – количество молекул или атомов, образующих агрегат; n – число потенциалопределяющих ионов, адсорбированных на поверхности агрегата; (n – x) – число противоионов в плотной части двойного электрического слоя (адсорбционный слой); x – число противоионов в диффузной части двойного электрического слоя; – заряд коллоидной частицы (гранулы).

При образовании золя иодида серебра при небольшом избытке иодида калия

образуется мицелла следующего состава:

.

Заряд коллоидной частицы в этом случае будет отрицательным.

Формулы мицелл золей носят только качественный характер, они позволяют судить о структуре поверхностных слоев, но не пригодны для количественной характеристики состава мицелл. Существование мицелл в дисперсных системах приводит к тому, что состав дисперсионной среды вдали и вблизи частиц различается. Если, например, диффузный слой содержит ионы H + , то при фильтровании суспензий эти ионы уходят вместе с частицами. В результате возникает повышенная концентрация ионов H + в осадке по сравнению с фильтратом. Это явление получило название суспензионного эффекта.

Образование ДЭС в присутствии электролита-стабилизатора обеспечивает электростатический фактор устойчивости дисперсной системе, который усиливается с ростом потенциала поверхности и толщины ДЭС. Он очень чувствителен к действию электролитов и характерен для систем с полярными, особенно водными средами, создающими условия для диссоциации. Наряду с электростатическим, в дисперсных схемах возможно проявление и других факторов стабилизации.

93.79.221.197 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам | Обратная связь.

Отключите adBlock!
и обновите страницу (F5)

очень нужно

Как правильно составлять формулу мицеллы

Согласно правилу Панета–Фаянса на кристаллической поверхности адсорбируются те ионы, которые способны достраивать кристаллическую решетку и дают труднорастворимое соединение с ионами, входящими в кристалл. В данном случае в соответствии с правилом Панета–Фаянса на кристалле AgI будут адсорбироваться ионы I — .

Адсорбция ионов I — происходит за счет химических сил, приводящих к прочному присоединению их к кристаллу. При этом поверхность кристалла заряжается отрицательно. Ионы I — , сообщившие поверхности заряд, называются потенциалообразующими ионами.

Оставшиеся в растворе противоположно заряженные ионы (противоионы) электростатически притягиваются к поверхности. Слой противоионов компенсирует заряд твердой поверхности. Таким образом, на границе фаз образуется двойной электрический слой (ДЭС), который состоит из двух частей.

Первая часть – это противоионы, непосредственно примыкающие к заряженной поверхности кристалла и удерживающиеся за счет электростатических и адсорбционных сил. Эти ионы вместе с потенциалообразующими ионами составляют адсорбционную часть ДЭС (слой Гельмгольца). Противоионы адсорбционного слоя настолько прочно удерживаются поверхностью, что, не отрываясь, передвигаются вместе с твердой частицей и образуют с ней коллоидную частицу.

Вторая часть – остальные противоионы, которые совершают тепловое движение около заряженной поверхности и удерживаются вблизи нее только за счет действия электростатических сил. Эти ионы образуют диффузионную часть ДЭС (слой Гуи).

Таким образом, строение золя иодида серебра можно записать следующим образом:

<m[AgI] ∙nI — ∙ (nx)K + > x — ∙ xK +

агрегат

ядро

коллоидная частица

где m число молекул AgI, образующих кристаллик;

n число потенциалообразующими ионов (как правило, т>n);

x число противоионов диффузного слоя;

(n–x) – число противоионов в адсорбированном слое. Число таких ионов калия меньше числа адсорбированных ионов йода (n), вследствие чего коллоидная частица имеет отрицательный заряд (x–).

Агрегат – частица дисперсной фазы, представляющая собой агрегат молекул ультрамикроскопических размеров.

Ядро мицеллы часть мицеллы, состоящая из агрегата и потенциалопределяющих ионов.

Коллоидная частица ядро вместе с частью прочно связанных с ним противоионов. В отличие от мицеллы, коллоидная частица имеет заряд (положительный или отрицательный).

Мицелла частица дисперсной фазы вместе с окружающим ее диффузным слоем, она электрически нейтральна.

Если получать золь йодистого серебра при некотором избытке AgNO3, то частицы золя йодистого серебра приобретают (в отличие от предыдущего случая) положительный заряд:

Устойчивость коллоидных систем

Коллоидные системы являются термодинамически неустойчивыми, так как обладают избыточной поверхностной энергией, связанной с наличием большой удельной площади поверхности дисперсной фазы. Уменьшение свободной энергии может происходить за счет укрупнения частиц путем их слипания или за счет растворения.

Под устойчивостью дисперсной системы понимают способность дисперсной фазы сохранять состояние равномерного распределения в дисперсионной среде. Н. П. Песков ввел понятия об агрегативной и седиментационной (кинетической) устойчивости.

Седиментационная устойчивость — способность дисперсной системы сохранять неизменным во времени распределение частиц по объему системы, т. е. способность системы противостоять действию силы, тяжести.

Агрегативная устойчивость — способность дисперсной системы сохранять неизменной во времени степень дисперсности, т. е. размеры частиц и их индивидуальность. Агрегативная устойчивость определяет способность дисперсной системы противодействовать слипанию, слиянию частиц. При нарушении агрегативной устойчивости происходит коагуляция.

Коагуляция — процесс слипания частиц с образованием крупных агрегатов. В результате коагуляции система теряет свою седиментационную устойчивость, т.к. частицы становятся слишком крупными и не могут участвовать в броуновском движении.

Коагуляция может быть вызвана повышением температуры, добавлением электролитов, механическим воздействием, действием на данный золь другого, противоположно заряженного золя, ультрацентрифугированием, старением золя за счет протекания реакций. Искусственно вызванное выпадение осадков из атмосферы (дождей) является примером коагуляции аэрозолей воды (облака) при действии электролитов, часто AgNO3.

Основное условие уменьшения устойчивости коллоидных растворов – потеря электрического заряда, поэтому в основном методами коагулирования являются методы снятия зарядов. На практике для этой цели чаще всего воздействуют на коллоидные системы растворами электролитов. Коагуляция золей начинается при концентрациях электролитов выше некоторой критической, называемой порогом коагуляции:

,

где Ск – порог коагуляции, ммоль/дм 3 ; V –объем электролита, вызвавший коагуляцию, дм 3 ; с – концентрация электролита-коагулянта, моль/дм 3 ; Vзоля –объем золя, дм 3 .

Правило Шульце-Гарди. Чем выше заряд иона-коагулятора, тем в меньшей концентрации он способен вызвать явную коагуляцию коллоидного раствора. Знак коагулирующего иона противоположен знаку потенциалопределяющего иона. Правило Шульце-Гарди иногда называют правилом знака и валентности:

Согласно правилу Шульце-Гарди порог коагуляции золя электролитом Ск обратно пропорционален заряду коагулирующего иона Z, в шестой степени:

CK I : CK II : CK III = 1:: или CK = α

где α — постоянная для данной системы величина;

Z заряд иона-коагулянта;

CK I , CK II , CK III — порог коагуляции однозарядного, двухзарядного, трехзарядного иона-коагулянта.

Читать еще:  Как правильно составлять решение круглого столадекларацию

Работа 1. Получение дисперсных систем

Цель работы. Освоение методик получения золей.

Приборы и реактивы.

Колбы стеклянные емкостью 100 и 250 см 3 .

Мерные цилиндры емкостью 25, 50 и 100 см 3 .

Пипетки емкостью 1, 2, 5, 20 см 3 .

Электрическая плитка закрытого типа.

Водный раствор FeCl3 (2 %-ный)..

Водный раствор KMnO4 (1,5 %-ный).

Концентрированный раствор NН4ОН.

Раствор серы в ацетоне насыщенный.

Раствор парафина в этиловом спирте насыщенный.

Водный раствор СаСl2 (4 моль/дм 3 ).

Водный раствор Na2CO3 (2 моль/дм 3 ).

Порядок выполнения работы.

Метод химической конденсации

Опыт 1. Получение золя гидроксида железа (III) реакцией гидролиза

К 250 см 3 кипящей воды прибавляют 10 см 3 2%-ного раствора FeCl3. При этом энергично протекает гидролиз хлорида железа и появляющиеся молекулы гидроксида железа конденсируются в коллоидные частицы, образующийся золь гидроксида железа имеет вишнево-коричневый цвет:

Строение мицеллы полученного золя можно изобразить следующим образом:

Опыт 2. Получение золя диоксида марганца.

Соль марганца восстанавливают тиосульфатом натрия.

Для этого к 5 см 3 1,5% -ного раствора KMnO4 приливают 45 см 3 дистиллированной воды. В полученный раствор вводят по каплям 1,5-2 см 3 1%-ного раствора Na2S2O3. Образуется вишнево-красный золь MnO2.

Метод физической конденсации (замена растворителя)

Опыт 3. Получение золя серы.

К 50 см 3 воды добавляют при взбалтывании 4-5 см 3 насыщенного (без нагревания) раствора серы в ацетоне (из капельницы). Образуется желтовато-белый золь серы в воде с отрицательно заряженными коллоидными частицами.

Опыт 4. Получение золя парафина

К 50 см 3 воды добавляют (из капельницы) при взбалтывании 1 см 3 насыщенного (без нагревания) раствора парафина в этаноле. Получается опалесцирующий золь парафина в воде с отрицательно заряженными коллоидными частицами.

Опыт 5. Получение золя гидроксида железа (III)

К 1 см 3 насыщенного раствора FeCl3 приливают 19 см 3 воды. К этому раствору добавляют 0,5–1 см 3 концентрированного раствора аммиака. Наблюдается образование осадка Fe(OH)3. Полученный осадок промывают три раза водой, декантируя ее. Наливают в мерный цилиндр 4 см 3 насыщенного раствора FeCl3 и добавляют воды до 100 мл. К промытому осадку добавляют разбавленный раствор FeCl3 до образования золя.

Строение мицеллы полученного золя можно изобразить следующим образом:

Получение и распад концентрированных золей (гелей)

Опыт 6. Получение мела в виде геля

Налить 10 см 3 раствора хлористого кальция в большую пробирку. Набрать в пипетку 20 см 3 раствора карбоната натрия. Зажать пальцем конец пипетки, опустить конец пипетки до дна пробирки и медленно вылить содержимое пипетки в раствор. Наблюдать за процессом образования студня и описать его вид.

Закрыть пробирку пробкой и энергично встряхнуть. Наблюдать за происходящим процессом и описать его.

При встряхивании гель переходит в золь, мицелла которого имеет вид:

Алгоритм составления формулы мицеллы

Мицелла – это структурная коллоидная частица дисперсной фазы.

Правила построения мицеллы:

1. Агрегатом является получающийся в ходе реакции осадок.

2. Потенциалобразующими ионами являются ионы, удовлетворяющие двум условиям:

а) данные ионы должны быть в строении вещества, которое находится в реакции в избытке или является стабилизатором;

б) данные ионы должны быть подобны ионам, находящимся в агрегате (правило Панета-Фаянса: на кристаллической поверхности агрегата адсорбируются те ионы, которые могут достроить её кристаллическую структуру).

3. Противоионами и ионами, образующими диффузионный слой, являются оставшиеся ионы вещества, которое находится в реакции в избытке или является стабилизатором.

4. Коэффициенты m, n, (n-x), x являются постоянными для любой мицеллы и численно не определены.

При смешивании разбавленных растворов нитрата серебра и хлорида натрия взятого в избытке, хлорид серебра не выпадает в осадок, а образуется коллоидный раствор.

Сначала составляем уравнение реакции в молекулярном и ионном виде:

Ag + + NO3 — + Na + + Cl — #8594; Na + + NO3 — + AgCl#8595;

Ag + + Cl — #8594; AgCl#8595;

Основу коллоидных частиц золя AgCl составляют микрокристаллы малорастворимого хлорида серебра, которые называются агрегатами . обозначаются m (AgCl).

Эта реакция происходит при наличии избытка хлорида натрия, вследствие избирательной адсорбции Сl -. на поверхности агрегата возникает отрицательно заряженный слой из хлорид-ионов.

Cl — называются потенциалопределяющими ионами.

Агрегат вместе с потенциалопределяющими ионами, которые адсорбировались и вошли в кристаллическую решётку агрегата, являются частицами твердой фазы – ядра.

Обратите внимание на то, что потенциалопределяющими ионами могут быть ионы, которые достраивают кристаллическую решетку агрегата или содержатся в составе агрегата.

Под действием электростатических сил к поверхности ядра притягиваются ионы противоположного знака – противоионы. В данном случае – это ионы Na + .

Агрегат, ядро, адсорбционный слой образуют гранулу. Заряд гранулы поределяется знаком заряда потенциалопределяющих ионов (Сl — ), обозначается в правом верхнем углу.

Так как концентрация противоионов около поверхности больше, чем в растворе, то остальная часть противоионов Na + слабее связана с ядром и под влиянием теплового движения диффундирует в сторону с меньшей концентрацией, образуя диффузионный слой проивоионов.

Гранула вместе с диффузионным слоем образует мицеллу. Мицеллы золей электронейтральны.

агрегат адсорбционный слой диффузионный слой

m #8209; количество молекул, входящих в состав агрегата;

n – количество потенциалопределяющих ионов;

(n –х) – количество противоионов, входящих в адсорбционный слой;

х – количество противоионов, входящих в диффузионный слой.

Задачи для самостоятельного решения:

1. Составить схему строения мицеллы золя гидроксида меди (II) в растворе хлорида меди.

2.Составить формулу мицеллы по уравнению: FeCL3 +3NaOH=Fe(OH)3+3NaCl

3. Золь иодида серебра получен при добавлении к раствору AgNO3 избытка KI. Определить заряд частиц полученного золя и написать формулу его мицеллы.

4. Напишите формулу мицеллы сульфата бария, полученного сливанием одинакового объема сильно разбавленной серной кислоты и менее разбавленного раствора хлорида бария.

5. Золь сернокислого бария получен смешением равных объемов растворов Ва(NО3)2 иН2SО4. Написать формулу мицеллы.

6. Золь Аl(ОН)3 получен смешением равных объемов растворов АlCl3 и NaОН. Напсать формулу мицеллы золя.

Самостоятельная работа № 8

Тема 2.3. Растворы высокомолекуляр-ных соединений

Задания

1. Выполнение домашних заданий по теме 2.3

2. Составление конспекта по учебнику о высокомолекулярных соединениях. Их роль в природе, технологии пищевых и рыбных продуктов.

Порядок выполнения задания: составление конспекта о высокомолекулярных соединениях. Их роль в природе, технологии пищевых и рыбных продуктов.

Методические рекомендации по написанию конспекта представлены в самостоятельной работе № 4.

Список литературы

1. Белик В.В. Физическая и коллоидная химия: учебник для студ. учреждений сред. проф. образования – М.: «Академия», 2013. – 288 с.

2. Макаров А.Г. Теоретические и практические основы физической химии: учебное пособие/ А.Г. Макаров, М.О. Сагида, Д.А. Раздобреев; Министерство образования и науки Российской Федерации. — Оренбург: Оренбургский государственный университет, 2015. — 172 с. [Электронный ресурс]

3. Органическая и физколлоидная химия: практикум / сост. И.В. Васильцова, Т.И. Бокова, Г.П. Юсупова. — Новосибирск: Новосибирский государственный аграрный университет, 2013. — 155 с. [Электронный ресурс]

Мицелла: строение, схема, описание и химическая формула

Коллоидные системы чрезвычайно важны в жизни любого человека. Это связано не только с тем, что практически все биологические жидкости в живом организме образуют коллоиды. Но и многие природные явления (туман, смог), почва, минералы, продукты питания, лекарственные средства тоже являются коллоидными системами.

Единицей таких образований, отражающих их состав и специфические свойства, принято считать макромолекулу, или мицеллу. Строение последней зависит от ряда факторов, но это всегда многослойная частица. Современной молекулярно-кинетической теорией коллоидные растворы рассматриваются в качестве частного случая истинных растворов, с более крупными частицами растворенного вещества.

Способы получения коллоидных растворов

Строение мицеллы, образующейся при возникновении коллоидной системы, отчасти зависит и от механизма этого процесса. Методы получения коллоидов делят на две принципиально разные группы.

Читать еще:  Параметры компьютера настроены правильно но устройство

Диспергационные методы связаны с измельчением довольно крупных частиц. В зависимости от механизма этого процесса различают следующие способы.

  1. Размол. Может осуществляться сухим или мокрым способом. В первом случае твердое вещество сначала измельчают, а уже затем прибавляют жидкость. Во втором случае вещество смешивают с жидкостью, и только после этого превращают в однородную смесь. Размол проводят в специальных мельницах.
  2. Набухание. Измельчение достигается благодаря тому, что частицы растворителя проникают внутрь дисперсной фазы, что сопровождается раздвиганием ее частиц вплоть до отрыва.
  3. Диспергирование ультразвуком. Материал, подверженный измельчению, помещают в жидкость и действуют на него ультразвуком.
  4. Диспергирование электрическим током. Востребовано при получении золей металлов. Проводится путем помещения в жидкость электродов из диспергируемого металла с последующей подачей на них высокого напряжения. В результате образуется вольтова дуга, в которой металл распыляется, а затем конденсируется в раствор.

Эти способы подходят для получения как лиофильных, так и лиофобных коллоидных частиц. Строение мицеллы осуществляется одновременно с разрушением исходной структуры твердого вещества.

Конденсационные методы

Вторая группа методов, основанная на укрупнении частиц, называется конденсационными. Этот процесс может основываться на физических или химических явлениях. К методам физической конденсации относят следующие.

  1. Замена растворителя. Сводится она к переводу вещества из одного растворителя, в котором оно растворяется очень хорошо, в другой, растворимость в котором значительно ниже. В результате этого мелкие частицы объединятся в более крупные агрегаты и возникнет коллоидный раствор.
  2. Конденсация из паров. В качестве примера можно назвать туманы, частицы которых способны оседать на холодных поверхностях и постепенно укрупняться.

К методам химической конденсации относят некоторые химические реакции, сопровождающиеся выпадением осадков комплексной структуры:

  1. Ионный обмен: NaCl + AgNO3 = AgCl↓ + NaNO3.
  2. Окислительно-восстановительные процессы: 2H2S + O2 = 2S↓ + 2H2O.
  3. Гидролиз: Al2S3 + 6H2O = 2Al(OH)3↓ + 3H2S.

Условия проведения химической конденсации

Строение мицелл, образующихся в ходе этих химических реакций, зависит от избытка или недостатка участвующих в них веществ. Также для появления коллоидных растворов необходимо соблюдать ряд условий, предотвращающих выпадение в осадок труднорастворимого соединения:

  • содержание веществ в смешиваемых растворах должно быть низким;
  • скорость их смешивания должна быть невысокой;
  • один из растворов должен быть взят в избытке.

Строение мицеллы

Основной частью мицеллы является ядро. Оно образовано большим числом атомов, ионов и молекул нерастворимого соединения. Обычно ядро характеризуется кристаллическим строением. Поверхность ядра имеет запас свободной энергии, позволяющей избирательно адсорбировать ионы из окружающей среды. Процесс этот подчиняется правилу Пескова, которое гласит: на поверхности твердого вещества преимущественно адсорбируются те ионы, которые способны достраивать его же кристаллическую решетку. Это возможно в том случае, если эти ионы родственные или сходные по природе и форме (размерам).

В ходе адсорбции на ядре мицеллы образуется слой положительно или отрицательно заряженных ионов, называемых потенциалопределяющими. Благодаря электростатическим силам полученный заряженный агрегат притягивает из раствора противоионы (ионы с противоположным зарядом). Таким образом, коллоидная частица имеет многослойное строение. Мицелла приобретает диэлектрический слой, построенный из двух типов противоположно заряженных ионов.

Гидрозоль BaSO4

В качестве примера удобно рассмотреть строение мицеллы сульфата бария в коллоидном растворе, приготовленном в избытке хлорида бария. Этому процессу соответствует уравнение реакции:

Малорастворимый в воде сульфат бария образует микрокристаллический агрегат, построенный из m-ного числа молекул BaSO4. Поверхностью этого агрегата адсорбируется n-ное количество ионов Ва 2+ . Со слоем потенциалопределяющих ионов связано 2(n — x) ионов Cl — . А остальная же часть противоионов (2x) расположена в диффузном слое. То есть гранула данной мицеллы будет положительно заряженной.

Если же в избытке взят сульфат натрия, то потенциалопределяющими ионами будут ионы SO4 2- , а противоионами – Na + . В этом случае заряд гранулы будет отрицательным.

Этот пример наглядно демонстрирует, что знак заряда гранулы мицеллы напрямую зависит от условий ее получения.

Запись мицеллы

Предыдущий пример показал, что химическое строение мицелл и формула, его отражающая, определяется тем веществом, которое взято в избытке. Рассмотрим способы записи названия отдельных частей коллоидной частицы на примере гидрозоля сульфида меди. Для его приготовления в избыточное количество раствора хлорида меди медленно приливают раствор сульфида натрия:

Строение мицеллы CuS, полученной в избытке CuCl2, записывается следующим образом:

Структурные части коллоидной частицы

В квадратных скобках записывают формулу труднорастворимого соединения, являющегося основой всей частицы. Ее принято называть агрегатом. Обычно число молекул, составляющих агрегат, записывают латинской буквой m.

Потенциалопределяющие ионы содержатся в избыточном количестве в растворе. Они располагаются на поверхности агрегата, а в формуле их записывают сразу за квадратными скобками. Число этих ионов обозначают символом n. Название этих ионов говорит о том, что их заряд определяет заряд гранулы мицеллы.

Гранула образована ядром и частью противоионов, находящихся в адсорбционном слое. Величина заряда гранулы равняется сумме зарядов потенциалопределяющих и адсорбированных противоионов: +(2n – x). Оставшаяся часть противоионов находится в диффузном слое и компенсирует заряд гранулы.

Если бы в избытке взяли Na2S, то для образовавшейся коллоидной мицеллы схема строения имела бы вид:

Мицеллы поверхностно-активных веществ

В том случае если концентрация поверхностно-активных веществ (ПАВ) в воде слишком высока, могут начать формироваться агрегаты из их молекул (или ионов). Эти укрупненные частицы имеют форму сферы и называются мицеллами Гартли — Ребиндера. Стоит отметить, что такой способностью обладают далеко не все ПАВ, а только те, у которых соотношение гидрофобной и гидрофильной частей оптимально. Это соотношение называется гидрофильно-липофильным балансом. Также немалую роль играет способность их полярных групп защищать углеводородное ядро от воды.

Агрегаты молекул ПАВ образуются по определенным законам:

  • в отличие от низкомолекулярных веществ, агрегаты которых могут включать различное число молекул m, существование мицелл ПАВ возможно со строго определенным числом молекул;
  • если для неорганических веществ старт мицеллообразования обусловлен пределом растворимости, то для органических поверхностно-активных веществ он определяется достижением критических концентраций мицеллообразования;
  • сначала в растворе увеличивается число мицелл, а затем происходит увеличение их размеров.

Влияние концентрации на форму мицеллы

На строение мицелл ПАВ оказывает влияние их концентрация в растворе. При достижении некоторых ее значений, коллоидные частицы начинают друг с другом взаимодействовать. Это приводит к изменению их формы следующим образом:

  • сфера превращается в эллипсоид, а затем в цилиндр;
  • высокая концентрация цилиндров ведет к формированию гексагональной фазы;
  • в некоторых случаях возникает ламелярная фаза и твердый кристалл (частицы мыла).

Виды мицелл

По особенностям организации внутренней структуры выделяют три типа коллоидных систем: суспензоиды, мицеллярные коллоиды, молекулярные коллоиды.

Суспензоидами могут быть необратимые коллоиды, а также лиофобные коллоиды. Эта структура характерна для растворов металлов, а также их соединений (различных оксидов и солей). Строение дисперсной фазы, образованной суспензоидами, не отличается от структуры компактного вещества. Она имеет молекулярную или ионную кристаллическую решетку. Отличие от суспензий заключается в более высокой дисперсности. Необратимость проявляется в способности их растворов после выпаривания образовывать сухой осадок, который невозможно превратить в золь простым растворением. Лиофобными их называют из-за слабого взаимодействия между дисперсной фазой и дисперсионной средой.

Мицеллярными коллоидами являются растворы, коллоидные частицы которых возникают при слипании дифильных молекул, содержащих полярные группы атомов и неполярные радикалы. Примером являются мыла и ПАВ. Молекулы в таких мицеллах удерживаются дисперсионными силами. Форма этих коллоидов может быть не только сферической, но и пластинчатой.

Молекулярные коллоиды вполне устойчивы без стабилизаторов. Их структурными единицами являются отдельные макромолекулы. Форма частицы коллоида может варьироваться в зависимости от свойств молекулы и внутримолекулярных взаимодействий. Так линейная молекула может образовывать стержень или клубок.

Ссылка на основную публикацию
Adblock
detector